
ar
X

iv
:n

uc
l-

th
/0

41
10

11
 v

1 
  2

 N
ov

 2
00

4

EXCITATIONS OF THE QUARK- GLUON PLASMA

C. M. Shakin,1, ∗ Huangsheng Wang,1 Qing Sun,1 Hu Li,1 and Xiangdong Li2

1Department of Physics, Brooklyn College of CUNY

Brooklyn, NY 11210, USA

2Department of Computer System Technology,

New York City College of Technology of CUNY, Brooklyn, NY 11201, USA

(Dated: November 2, 2004)

Abstract

We will discuss the spectrum of the eta mesons making use of the Nambu-Jona-Lasinio (NJL)

model supplemented with a model of confinement. We will go on to discuss the properties of

mesons at finite temperature and the phenomenon of deconfinement. We will then discuss some

excited states of the quark-gluon plasma calculated in lattice QCD models.These resonances are

thought to be created in heavy-ion collisions.We consider the role these states play in leading to a

hydrodynamic description of the plasma at early stages of its formation.
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I. INTRODUCTION

In this presentation we will discuss the properties of QCD as one moves upward along

the temperature axis from the point at T = 0, where the matter density is zero. Note that

for experiments at RHIC the associated chemical potential is small.
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Fig. 1 Schematic phase diagram of nuclear matter (Taken from F. Karsch, Lect. Notes

Phys. 583, 209 (2002) [hep-lat/0106019].)

II. PROPERTIES OF THE η MESONS CALCULATED WITH THE NJL INTER-

ACTION AND A MODEL OF CONFINEMENT

C. M. Shakin and Huangsheng Wang, Physical Review D, 65, 094003 (2002)

Recent work has shown that the singlet-octet mixing angles of the η(547) and η′(958)
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are different. That may be demonstrated either in extended chiral perturbation theory

or by analysis of a large body of experimental data. The conclusion is that the η(547)

is almost entirely of octet character, while the η′(958) is mainly of singlet character with

about 10% octet component. It is possible to calculate the mixing angles and decay constants

in our generalized Nambu-Jona-Lasinio (NJL) model, which includes a covariant model of

confinement. Our model is able to give a good account of the mass values of the η(547),

η′(958), η(1295), and η(1440) mesons. (We also provide predictions for the mass values

of a large number of radially excited states.) It is well known that the UA(1) symmetry

is broken, so that we only have eight pseudo Goldstone bosons, rather than the nine we

would have otherwise. In the NJL model that feature may be introduced by including

the ’t Hooft interaction in the Lagrangian. That interaction reduces the energy of the

octet state somewhat and significantly increases the energy of the singlet state, making it

possible to fit the mass values of the η(547) and η′(958) in the NJL model when

the ’t Hooft interaction is included. In this work, we derive the equations of a covariant

random phase approximation that may be used to study the nonet of pseudoscalar mesons.

We demonstrate that a consistent treatment of the ’t Hooft interaction leads to excellent

results for the singlet-octet mixing angles. (The values obtained for the singlet and octet

decay constants are also quite satisfactory.) It may be seen that the difference between the up

(or down) constituent quark mass and the strange quark mass induces singlet-octet mixing

that is too large. However, the ’t Hooft interaction contains singlet-octet coupling that

enters into the theory with a sign opposite to that of the term arising from the difference of

the quark mass values, leading to quite satisfactory results. In this work we present the wave

function amplitudes for a number of states of the eta mesons. (The inclusion of pseudoscalar

axial-vector coupling is important for our analysis and results in the need to specify eight

wave function amplitudes for each state of the eta mesons.) We present the values of the

various constants that parameterize our generalized NJL model and which give satisfactory

values of the eta meson masses, decay constants, and mixing angles. It is found that the

calculated mass values for the η(1295) and η(1440) are quite insensitive to variation of the

parameters of the model whose values have largely been fixed in our earlier studies of other

light mesons.
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Fig. 2
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Fig. 3
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Fig. 4 Experimental and calculated spectra of the η mesons. Columns 1 and 3 show the

results for the confinement potential only.
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Data Set I Set II Set III Set IV

mη(547) [MeV] · · · 538 536 527 555

mη′(958) [MeV] · · · 911 942 963 949

mη(1295) [MeV] · · · 1319 1318 1317 1319

mη(1440) [MeV] · · · 1414 1416 1419 1411

f̃
(8)
η [MeV] · · · 177.2 178.6 180.9 163

f̃
(0)
η [MeV] · · · 27.59 24.51 18.95 52.8

f̃
(8)
η′ [MeV] · · · -84.26 -84.64 -80.97 -105

f̃
(0)
η′ [MeV] · · · 159.2 157.3 156.0 150

F8 [MeV] (1.32 ± 0.06)fπ)

= 174 ± 8 MeV 179.3 180.3 181.9 170

F0 [MeV] (1.37 ± 0.07)fπ)

= 181 ± 9 MeV 180.3 178.2 174.2 190

θη (−5.7 ± 2.7)◦ −8.81◦ −7.82◦ −6.26◦ −16.1◦

θη′ (−24.6 ± 2.3)◦ −28.0◦ −28.0◦ −26.4◦ −38.2◦

θ0 (−7.0 ± 2.7)◦ −9.83◦ −8.76◦ −6.94◦ −19.4◦

θ8 (−21.5 ± 2.4)◦ −25.4◦ −25.4◦ −24.1◦ −32.8◦

θ0 − θ8 16.4◦ 15.6◦ 16.6◦ 17.2◦ 13.4◦

F̂0 [MeV] (1.21 ± 0.07)fπ)

= 160 ± 9 MeV 161 159 157 158

F̂8 [MeV] = 188 ± 11 MeV 196 198 198 194

GD [ GeV−5] · · · -180 -200 -220 -161.6(G08 = 0)
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III. CHIRAL SYMMETRY RESTORATION AND DECONFINEMENT OF

LIGHT MESONS AT FINITE TEMPERATURE

Hu Li and C. M. Shakin , hep-ph/0209136

Confinement model:

V C(r) = κr exp(−µ0r), (3.1)

V C(~k − ~k ′) = −8πκ

[

1

[(~k − ~k ′)2 + µ2]2
−

4µ2

[(~k − ~k ′)2 + µ2]3

]

, (3.2)

V C(k̂ − k̂ ′) = −8πκ

[

1

[−(k̂ − k̂ ′)2 + µ2]2
−

4µ2

[−(k̂ − k̂ ′)2 + µ2]3

]

, (3.3)

V C(r, T ) = κr exp[−µ(T )r] , (3.4)

µ(T ) =
µ0

1 − 0.7(T/Tc)2
, (3.5)

Vmax(T ) =
κ[1 − 0.7(T/Tc)

2]

µ0e
. (3.6)
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Fig. 5 A comparison of quenched (open symbols) and unquenched (filled symbols) results

for the interquark potential at finite temperature. The dotted line is the zero temperature

quenched potential. Here, the symbols for T = 0.80Tc [open triangle], T = 0.88Tc [open

circle], T = 0.94Tc [open square], represent the quenched results. The results with dynamical

fermions are given at T = 0.68Tc [solid downward-pointing triangle], T = 0.80Tc [solid

upward-pointing triangle], T = 0.88Tc [solid circle], and T = 0.94Tc [solid square].
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Fig. 6 The potential V C(r, T ) is shown for T/Tc = 0 [solid line], T/Tc = 0.4 [dotted

line], T/Tc = 0.6 [dashed line], T/Tc = 0.8 [dash-dot line], T/Tc = 0.9 [short dashes], T/Tc =

1.0 [dash-dot-dot line]. Here, V C(r, T ) = κr exp[−µ(T )r], with µ(T ) = 0.01GeV/[1 −

0.7(T/Tc)
2].
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Fig. 7 Temperature dependent constituent mass values, mu(T ) and ms(T ), calculated

using the equation below. are shown. Here m0
u = 0.0055 GeV, m0

s = 0.120 GeV, and

G(T ) = 5.691[1 − 0.17(T/Tc)], if we use Klevansky’s notation.

m(T ) = m0 + 2GS(T )NC
m(T )

π2

∫ Λ

0
dp p2

Ep

tanh(1
2
βEp).
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Fig. 8 Values of mu(T ) are shown. The dashed curve is calculated with m0 = 5.50 MeV.

Here, G(T ) = G [ 1 − 0.17 (T/Tc) ], with G = 5.691 GeV−2 and Tc = 0.150 GeV. The solid

curve is calculated with the same value of G(T ) and Tc, but with m0 = 0. From the solid

curve, we see that chiral symmetry is restored at T = 0.136 GeV when m0 = 0.

Fig. 9 The mass values of the pionic states calculated in this work with Gπ(T ) =

13.49[1− 0.17 T/Tc] GeV, GV (T ) = 11.46[1− 0.17 T/Tc] GeV. The value of the pion mass is

0.223 GeV at T/Tc = 0.90, where mu(T ) = 0.102 GeV and ms(T ) = 0.449 GeV. The pion

is bound up to T/Tc = 0.94, but is absent beyond that value.
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IV. CALCULATION OF HADRONIC CURRENT CORRELATION FUNCTIONS

AT FINITE TEMPERATURE

Bing He, Hu Li, C. M. Shakin, and Qing Sun, Physical Review C 67, 065203 (2003)

Fig. 10 The upper figure represents the basic polarization diagram of the NJL model

in which the lines represent a constituent quark and a constituent antiquark. The lower

figure shows a confinement vertex [filled triangular region] used in our earlier work. For the

present work we neglect confinement for T ≥ 1.2 Tc, with Tc = 150 MeV.

For ease of reference, we present a discussion of our calculation of hadronic current cor-

relators. The procedure we adopt is based upon the real-time finite-temperature formalism,

in which the imaginary part of the polarization function may be calculated. Then, the real

part of the function is obtained using a dispersion relation. The result we need for this

work has been already given in the work of Kobes and Semenoff. (The quark momentum is

k and the antiquark momentum is k − P . We will adopt that notation in this section for

ease of reference to the results presented in the work of Kobes and Semenoff.) We write the

imaginary part of the scalar polarization function as

Im JS(P 2, T ) =
1

2
(2Nc)βS ǫ(P 0)

∫

d3k

(2π)3
e−

~k 2/α2

(

2π

2E1(k)2E2(k)

)

(4.1)

{(1 − n1(k) − n2(k))δ(P 0 − E1(k) − E2(k))

−(n1(k) − n2(k))δ(P 0 + E1(k) − E2(k))

−(n2(k) − n1(k))δ(P 0 − E1(k) + E2(k))

−(1 − n1(k) − n2(k))δ(P 0 + E1(k) + E2(k))} .
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Here, E1(k) = [~k 2 +m2
1(T ) ]1/2. We have included a Gaussian regulator, exp[−~k 2/α2 ], with

α = 0.605 GeV, which is the same as that used in most of our applications of the NJL model

in the calculation of meson properties. We also note that

n1(k) =
1

eβE1(k) + 1
, (4.2)

and

n2(k) =
1

eβE2(k) + 1
. (4.3)

For the calculation of the imaginary part of the polarization function, we may put k2 =

m2
1(T ) and (k − P )2 = m2

2(T ), since in that calculation the quark and antiquark are on-

mass-shell. In Eq. (4.1) the factor βS arises from a trace involving Dirac matrices, such

that

βS = −Tr[ (/k + m1)(/k − /P + m2) ] (4.4)

= 2P 2 − 2(m1 + m2)
2 , (4.5)

where m1 and m2 depend upon temperature. In the frame where ~P = 0, and in the case

m1 = m2, we have βS = 2P 2
0 (1 − 4m2/P 2

0 ). For the scalar case, with m1 = m2, we find

Im JS(P 2, T ) =
NcP

2
0

4π

(

1 −
4m2(T )

P 2
0

)3/2

e−
~k 2/α2

[ 1 − 2n1(k) ] , (4.6)

where

~k 2 =
P 2

0

4
− m2(T ) . (4.7)

For pseudoscalar mesons, we replace βS by

βP = −Tr[ iγ5(/k + m1)iγ5(/k − /P + m2) ] (4.8)

= 2P 2 − 2(m1 − m2)
2 , (4.9)

which for m1 = m2 is βP = 2P 2
0 in the frame where ~P = 0. We find, for the π mesons,

Im JP (P 2, T ) =
NcP

2
0

4π

(

1 −
4m2(T )

P 2
0

)1/2

e−
~k 2/α2

[ 1 − 2n1(k) ] , (4.10)

where ~k 2 = P 2
0 /4 − m2

u(T ), as above. Thus, we see that, relative to the scalar case, the

phase space factor has an exponent of 1/2 corresponding to a s-wave amplitude. For the

scalars, the exponent of the phase-space factor is 3/2.
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For a study of vector mesons we consider

βV
µν = Tr[ γµ(/k + m1)γν(/k − /P + m2) ] , (4.11)

and calculate

gµνβV
µν = 4[ P 2 − m2

1 − m2
2 + 4m1m2 ] , (4.12)

which, in the equal-mass case, is equal to 4P 2
0 + 8m2(T ), when m1 = m2 and ~P = 0. This

result will be needed when we calculate the correlator of vector currents in the next section.

Note that, for the elevated temperatures considered in this work, mu(T ) = md(T ) is quite

small, so that 4P 2
0 + 8m2

u(T ) can be approximated by 4P 2
0 , when we consider the vector

current correlation functions. In that case, we have

Im JV (P 2, T ) ≃
2

3
Im JP (P 2, T ) . (4.13)

At this point it is useful to define functions that do not contain that Gaussian regulator:

Im J̃P (P 2, T ) =
NcP

2
0

4π

(

1 −
4m2(T )

P 2
0

)1/2

[ 1 − 2n1(k) ] , (4.14)

and

Im J̃V (P 2, T ) =
2

3

NcP
2
0

4π

(

1 −
4m2(T )

P 2
0

)1/2

[ 1 − 2n1(k) ] , (4.15)

We need to use a twice-subtracted dispersion relation to obtain Re J̃P (P 2, T ), or

Re J̃V (P 2, T ). For example,

Re J̃P (P 2, T ) = Re J̃P (0, T ) +
P 2

P 2
0

[ Re J̃P (P 2
0 , T ) − Re J̃P (0, T ) ] + (4.16)

P 2(P 2 − P 2
0 )

π

∫ Λ̃2

4m2(T )

ds
Im J̃P (s, T )

s(P 2 − s)(P 2
0 − s)

,

where Λ̃2 can be quite large, since the integral over the imaginary part of the polarization

function is now convergent. We may introduce J̃P (P 2, T ) and J̃V (P 2, T ) as complex func-

tions, since we now have both the real and imaginary parts of these functions. We note that

the construction of either Re JP (P 2, T ), or Re JV (P 2, T ), by means of a dispersion relation

does not require a subtraction. We use these functions to define the complex functions

JP (P 2, T ) and JV (P 2, T ).

14



In order to make use of Eq. (4.16), we need to specify J̃P (0) and J̃P (P 2
0 ). We found it

useful to take P 2
0 = −1.0 GeV2 and to put J̃P (0) = JP (0) and J̃P (P 2

0 ) = JP (P 2
0 ). The

quantities J̃V (0) and J̃V (P 2
0 ) are determined in an analogous function. This procedure in

which we fix the behavior of a function such as ReJ̃V (P 2) or ReJ̃V (P 2) is quite analogous to

the procedure used in our earlier work. In that work we made use of dispersion relations to

construct a continuous vector-isovector current correlation function which had the correct

perturbative behavior for large P 2 → −∞ and also described that low-energy resonance

present in the correlator due to the excitation of the ρ meson. In our earlier work the

NJL model was shown to provide a quite satisfactory description of the low-energy resonant

behavior of the vector-isovector correlation function.

We now consider the calculation of temperature-dependent hadronic current correlation

functions. The general form of the correlator is a transform of a time-ordered product of

currents,

iC(P 2, T ) =

∫

d4xeiP ·x << T (j(x)j(0)) >> , (4.17)

where the double bracket is a reminder that we are considering the finite temperature case.

For the study of pseudoscalar states, we may consider currents of the form jP,i(x) =

q̃(x)iγ5λ
iq(x), where, in the case of the π mesons, i = 1, 2 and 3. For the study of scalar-

isoscalar mesons, we introduce jS,i(x) = q̃(x)λiq(x), where i = 0 for the flavor-singlet current

and i = 8 for the flavor-octet current.

In the case of the pseudoscalar-isovector mesons, the correlator may be expressed in terms

of the basic vacuum polarization function of the NJL model, JP (P 2, T ). Thus,

CP (P 2, T ) = J̃P (P 2, T )
1

1 − GP (T )JP (P 2, T )
, (4.18)

where GP (T ) is the coupling constant appropriate for our study of π mesons. We have

found GP (T ) = 13.49 GeV−2 by fitting the pion mass in a calculation made at T = 0, with

mu = md = 0.364 GeV. The result given in Eq. (4.18) is only expected to be useful for small

P 2, since the Gaussian regulator strongly modifies the large P 2 behavior. Therefore, we

suggest that the following form is useful, if we are to consider the larger values of P 2.

CP (P 2, T )

P 2
=

[

J̃P (P 2, T )

P 2

]

1

1 − GP (T )JP (P 2, T )
. (4.19)
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(As usual, we put ~P = 0.) This form has two important features. At large P 2
0 ,

Im CP (P0, T )/P 2
0 is a constant, since Im J̃P (P 2

0 , T ) is proportional to P 2
0 . Further, the

denominator of Eq. (4.19) goes to 1 for large P 2
0 . On the other hand, at small P 2

0 , the

denominator is capable of describing resonant enhancement of the correlation function. As

we will see, the results obtained when Eq. (4.19) is used appear quite satisfactory.

For a study of the vector-isovector correlators, we introduce conserved vector currents

jµ,i(x) = q̃(x)γµλiq(x) with i=1, 2 and 3. In this case we define

Jµν
V (P 2, T ) =

(

g µν −
P µP ν

P 2

)

JV (P 2, T ) (4.20)

and

Cµν
V (P 2, T ) =

(

g µν −
P µP ν

P 2

)

CV (P 2, T ) , (4.21)

taking into account the fact that the current jµ, i(x) is conserved. (Note that Eqs. (4.20) and

(4.21) are valid for zero temperature. However, we still use that form at finite temperature

for convenience.) We may then use the fact that

JV (P 2, T ) =
1

3
gµνJ

µν
V (P 2, T ) (4.22)

and

Im JV (P 2, T ) =
2

3

[

P 2
0 + 2m2

u(T )

4π

](

1 −
4m2

u(T )

P 2
0

)1/2

e−
~k 2/α2

[ 1 − 2n1(k) ] (4.23)

≃
2

3
ImJP (P 2, T ) . (4.24)

(See Eq. (4.7) for the specification of k = |~k|.) We then have

CV (P 2, T ) = J̃V (P 2, T )
1

1 − GV (T )JV (P 2, T )
, (4.25)

where we have introduced

ImJ̃V (P 2, T ) =
2

3

[

P 2
0 + 2m2

u(T )

4π

](

1 −
4m2

u(T )

P 2
0

)1/2

[ 1 − 2n1(k) ] (4.26)

≃
2

3
ImJ̃P (P 2, T ) . (4.27)

In the literature, ω is used instead of P0. We may define the spectral functions

σV (ω, T ) =
1

π
Im CV (ω, T ) , (4.28)
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and

σP (ω, T ) =
1

π
Im CP (ω, T ) , (4.29)

Since different conventions are used in the literature, we may use the notation σP (ω, T )

and σV (ω, T ) for the spectral functions given there. We have the following relations:

σP (ω, T ) = σP (ω, T ) , (4.30)

and

σV (ω, T )

2
=

3

4
σV (ω, T ) , (4.31)

where the factor 3/4 arises because there is a division by 4 in the literatures, while we have

divided by 3.

V. CALCULATION OF THE MOMENTUM DEPENDENCE OF HADRONIC

CURRENT CORRELATION FUNCTIONS AT FINITE TEMPERATURE

Xiangdong Li, Hu Li, C. M. Shakin, Qing Sun and Huangsheng Wang, nucl-th/0405081

We have calculated spectral functions associated with hadronic current correlation func-

tions for vector currents at finite temperature. We made use of a model with chiral sym-

metry, temperature-dependent coupling constants and temperature-dependent momentum

cutoff parameters. Our model has two parameters which are used to fix the magnitude

and position of the large peak seen in the spectral functions. In our earlier work, good fits

were obtained for the spectral functions that were extracted from lattice data by means

of the maximum entropy method (MEM). In the present work we extend our calculations

and provide values for the three-momentum dependence of the vector correlation function

at T = 1.5 Tc. These results are used to obtain the correlation function in coordinate

space, which is usually parametrized in terms of a screening mass. Our results for the

three-momentum dependence of the spectral functions are similar to those found in a recent

lattice QCD calculation for charmonium [S. Datta, F. Karsch, P. Petreczky and I. Wet-

zorke, hep-lat/0312037]. For a limited range we find the exponential behavior in coordinate

17
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space that is usually obtained for the spectral function for T > Tc and which allows for the

definition of a screening mass.
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Fig. 11 The spectral functions σ/ω2 for pseudoscalar states obtained by MEM are

shown. The solid line is for T/Tc = 1.5 and the dashed line is for T/Tc = 3.0. The second

peak is a lattice artifact.
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Fig. 12 The spectral functions σ/ω2 for vector states obtained by MEM are shown. The

second peak is a lattice artifact.
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Fig. 13 The imaginary part of the correlator σ(ω)/ω2 is shown for various values of |~P |

as a function of ω2. Starting with the topmost curve the values of |~P | in GeV units are 0.10,

0.30, 0.50, 0.70, 0.90, 1.10, 1.30, 1.50, 1.70, 1.90 and 2.10. Here we have used GS = 1.2

GeV−2 and kmax = 1.22 GeV.
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Fig. 14 The correlation function C(z) is shown. The dotted line represents a fit using

an exponential function.

Here, C(z) = 1
2

∫

∞

−∞
dPze

iPzz
∫

∞

0
dω σ(ω,0,0,Pz)

ω
. We may also use the form C(z) =

1
4

∫

∞

−∞
dPze

iPzz
∫

∞

0
dP 2 σ(P 2,0,0,Pz)

P 2 .
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VI. QUARK PROPAGATION IN THE QUARK-GLUON PLASMA

Xiangdong Li, Hu Li, C. M. Shakin and Qing Sun, Physical Review C, 69, 065201

(2004)

It has recently been suggested that the quark-gluon plasma formed in heavy-ion collisions

behaves as a nearly ideal fluid. That behavior may be understood if the quark and antiquark

mean-free- paths are very small in the system, leading to a “sticky molasses” description

of the plasma, as advocated by the Stony Brook group. This behavior may be traced to

the fact that there are relatively low-energy qq resonance states in the plasma leading to

very large scattering lengths for the quarks. These resonances have been found in lattice

simulation of QCD using the maximum entropy method (MEM). We have used a chiral

quark model, which provides a simple representation of effects due to instanton dynamics,

to study the resonances obtained using the MEM scheme. In the present work we use our

model to study the optical potential of a quark in the quark-gluon plasma and calculate

the quark mean-free-path. Our results represent a specific example of the dynamics of the

plasma as described by the Stony Brook group.
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Fig. 15 Values of t(P 2, p2) are shown for various values of the quark momentum |~p2|.

Starting with the uppermost curve, the |~p2| values in GeV units are 0.01, 0.03, 0.05, 0.07,
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0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29 and 0.31. (For large P 2, we have

t(P 2, p2) ≃ (1/πP 2)G.) Here P 2 = (p1 + p2)
2, where p1 is the antiquark momentum.
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Fig. 16 Values of n(p1) are shown for µ = 1.1GeV (dotted curve), µ = 1.3GeV (dashed

curve) and µ = 1.5GeV (solid curve). Here T = 1.5 Tc with Tc = 270MeV.
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Fig. 17 The imaginary part of the quark optical potential is shown for µ = 1.1GeV

(dotted curve), µ = 1.3GeV (dashed curve) and µ = 1.5GeV (solid curve). (We recall that

the nucleon-nucleus imaginary optical potential is about 0.01GeV in magnitude.)
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VII. CALCULATION OF SCREENING MASSES IN A CHIRAL QUARK MODEL

Xiangdong Li, Hu Li, C. M. Shakin and Qing Sun, nucl-th/0405035

We consider a simple model for the coordinate-space vacuum polarization function which

is often parametrized in terms of a screening mass. We discuss the circumstances in which

the value msc = πT is obtained for the screening mass. In the model considered here, that

result is obtained when the momenta in the relevant vacuum polarization integral are small

with respect to the first Matsubara frequency.

In order to present our results in the simplest form, we consider only the scalar interaction

proportional to (qq)2. We also extend the definition of σ(ω, T ) to include a dependence upon

the total moment of the quark and antiquark appearing in the polarization integral. Thus

we consider the imaginary part of the correlator, σ(ω,
−→
P ). Since we place

−→
P along the z -axis

this quantity may be written as σ(ω, 0, 0, Pz). In this work we will present our result for the

coordinate-dependent correlator C(z) which is proportional to the correlator,

C(z) =
1

2

∫

∞

−∞

dPze
iPzz

∫

∞

0

dω
σ(ω, 0, 0, Pz)

ω
. (7.1)

We may also use the form

C(z) =
1

4

∫

∞

−∞

dPze
iPzz

∫

∞

0

dP 2 σ(P 2, 0, 0, Pz)

P 2
. (7.2)

We have made a study of the screening mass in a simple model in order to understand

the origin of exponential behavior for the correlator. We consider the Matsubara formalism

and note that the quark propagator may be written, with β = 1/T ,

Sβ(
−→
k , ωn) =

γ0(2n + 1)π/β + −→γ ·
−→
k − M

(2n + 1)2π2/β2 +
−→
k 2 + M2

. (7.3)

For bosons the vacuum polarization function is given as,

Π(−→p , p0) =
g2

2β

∑

n

d3k

(2π)3

1

4n2π2

β2
+
−→
k 2 + M2

·
1

(

2nπ

β
+ p0

)2

+ (
−→
k + −→p )2 + M2

. (7.4)

We modify the last equation to refer to fermions. In this case the Matsubara frequencies

are

ωn =
(2n + 1)π

β
(7.5)
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and we have

Π(−→p , p0) =
g2

2β
Tr

∫

d3k

(2π)3

[(

γ0π/β + −→γ ·
−→
k
)(

γ0(p0 + π/β) + −→γ · (
−→
k + −→p )

)]

(

π2

β2
+
−→
k 2

)

[

(

π

β
+ p0

)2

+ (
−→
k + −→p )2

] , (7.6)

if we keep only the first term in the sum, where ω0 = π/β. As a next step we drop p0, so

that we have

Π(−→p , 0) =
g2

2β
Tr

∫

d3k

(2π)3

[(

γ0π/β + −→γ ·
−→
k
)(

γ0π/β + −→γ · (
−→
k + −→p )

)]

(

(

π

β

)2

+
−→
k 2

)[

(

π

β

)2

+ (
−→
k + −→p )2

] . (7.7)

We then take −→p along the z axis and write Π(pz) = Π(−→p , 0). We define

C(z) =

∫

dpz eipzz Π(pz) . (7.8)

In our calculation we replace g2/2β by unity and use a sharp cutoff so that |
−→
k | < kmax.
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Fig. 18 The function C(z) is shown for a sharp cutoff of kmax = 0.1 GeV. The dotted

line represents an exponential fit to the curve using msc = 1.23 GeV. (We recall that πT is

equal to 1.27 GeV.)
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Fig. 19 The function C(z) of is shown for a sharp cutoff of kmax = 0.4 GeV. The dotted

line represents an exponential fit to the curve using msc = 0.961 GeV. (We recall that πT is

equal to 1.27 GeV.)
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